Foiling and Steam...cogitating this subject...the following relates to water, but water/moisture is very related to cooking basics. The same process happens to anything cooked/held at or above 212˚ (generally accecepted steam ˚ depending on altitude and barometric pressure).
I found this interesting...
Steam: As the temperature increases and the water approaches its boiling condition, some molecules attain enough kinetic energy to reach velocities that allow them to momentarily escape from the liquid into the space above the surface, before falling back into the liquid.
Further heating causes greater excitation and the number of molecules with enough energy to leave the liquid increases. As the water is heated to its boiling point, bubbles of steam form within it and rise to break through the surface.
Considering the molecular structure of liquids and vapours, it is logical that the density of steam is much less than that of water, because the steam molecules are further apart from one another. The space immediately above the water surface thus becomes filled with less dense steam molecules.
When the number of molecules leaving the liquid surface is more than those re-entering, the water freely evaporates. At this point it has reached boiling point or its saturation temperature, as it is saturated with heat energy.
Enthalpy of evaporation or latent heat (hfg)
This is the amount of heat required to change the state of water at its boiling temperature, into steam. It involves no change in the temperature of the steam/water mixture, and all the energy is used to change the state from liquid (water) to vapour (saturated steam).
The old term latent heat is based on the fact that although heat was added, there was no change in temperature. However, the accepted term is now enthalpy of evaporation.
Like the phase change from ice to water, the process of evaporation is also reversible. The same amount of heat that produced the steam is released back to its surroundings during condensation, when steam meets any surface at a lower temperature.
This may be considered as the useful portion of heat in the steam for heating purposes, as it is that portion of the total heat in the steam that is extracted when the steam condenses back to water.
The above from
Steam